전체 글

운동을 좋아하는 8년차 웹 개발자 입니다.
·Java
네트워크 플로우 문제는 네트워크 상에서 하나의 지점에서 다른 지점까지 데이터나 자원을 얼마나 효율적으로 전송할 수 있는지를 결정하는 문제입니다. 이러한 문제는 교통 시스템, 파이프라인 설계, 정보 네트워크 등 다양한 분야에서 발견될 수 있습니다. 네트워크 플로우 알고리즘의 핵심은 최대 플로우를 찾는 것이며, 이는 네트워크 내에서 가능한 최대량의 플로우를 소스에서 싱크까지 전송하는 것을 의미합니다. Java 언어는 이러한 알고리즘을 구현하기에 충분한 자료구조와 기능을 제공합니다. 본문에서는 Ford-Fulkerson 알고리즘을 예로 들어 Java로 네트워크 플로우 문제를 해결하는 방법을 소개합니다. Ford-Fulkerson 알고리즘의 기본 원리 Ford-Fulkerson 알고리즘은 네트워크의 플로우를 증..
·Java
백트래킹은 해결책에 대한 가능한 모든 방법을 탐색하여 문제를 해결하는 알고리즘 기법입니다. 이 방법은 주로 결정 트리(decision tree)를 기반으로 하여, 각 단계에서 가능한 모든 선택을 시도하고, 그 선택이 해결책으로 이어지지 않을 때 이전 단계(또는 상태)로 돌아가(즉, "backtrack") 다른 가능한 선택을 시도합니다. 백트래킹은 특히 조합 문제, 순열 문제, 분할 가능 문제 등에서 유용하게 사용됩니다. Java는 이러한 유형의 문제를 해결하기 위한 백트래킹 알고리즘을 구현하는데 적합한 언어 중 하나입니다. 본문에서는 Java를 사용한 백트래킹의 기본적인 구현 방법과 몇 가지 실제 예제를 소개합니다. 백트래킹의 기본 원칙 백트래킹 알고리즘의 핵심은 모든 가능한 해결 방법을 시도해보고, 그..
·Java
해시 알고리즘은 데이터를 효율적으로 관리하기 위해 널리 사용되는 기술입니다. 해시는 어떤 길이의 입력(또는 '키')도 고정된 크기의 해시값으로 변환하는 함수입니다. 이 과정에서 해시 테이블을 사용하여 데이터의 저장과 검색을 빠르게 수행할 수 있습니다. Java는 hashCode() 메소드를 통해 객체의 해시 코드를 반환하며, HashMap과 같은 컬렉션 프레임워크에서 해시 알고리즘을 활용합니다. 본문에서는 Java에서 해시 알고리즘을 사용하는 기본적인 방법과, 해시 충돌 해결 기법, 그리고 해시맵의 실제 사용 예제를 소개합니다. Java의 hashCode() 메소드 Java에서 모든 객체는 hashCode() 메소드를 가지고 있으며, 이 메소드는 객체의 메모리 주소 또는 객체가 가진 데이터를 기반으로 한..
·Java
트리 구조는 계층적 관계를 표현하는 데 사용되는 비선형 자료구조로, 컴퓨터 과학에서 광범위하게 사용됩니다. 트리의 각 요소를 노드라고 하며, 노드 간의 연결을 엣지라고 합니다. 특히 이진 트리, AVL 트리, 레드-블랙 트리 등 다양한 형태의 트리가 있으며, 각각은 특정 알고리즘을 구현하는 데 적합합니다. Java는 객체 지향 프로그래밍 언어로서 트리 알고리즘을 구현하기에 용이한 특성을 가지고 있습니다. 본문에서는 트리의 기본 개념과 함께, 이진 트리의 순회, 이진 검색 트리의 구현, 그리고 트리 기반의 고급 알고리즘인 AVL 트리 및 레드-블랙 트리의 기본 개념과 구현 방법을 Java 예제 코드와 함께 소개합니다. 이진 트리의 순회 이진 트리에서는 노드를 방문하는 순서에 따라 전위 순회(Pre-orde..
·Java
그래프 이론은 컴퓨터 과학에서 중요한 위치를 차지하며, 네트워크, 경로 찾기, 최적화 문제 등 다양한 분야에서 응용됩니다. 그래프 알고리즘은 노드(정점)들과 그 노드들을 연결하는 엣지(간선)들로 구성된 그래프 데이터 구조를 사용하여 문제를 해결합니다. Java는 객체 지향 프로그래밍을 통해 복잡한 그래프 알고리즘을 구현하기에 적합한 언어입니다. 본문에서는 그래프의 기본 개념을 소개하고, 깊이 우선 탐색(DFS), 너비 우선 탐색(BFS), 그리고 최단 경로 알고리즘인 다익스트라 알고리즘을 Java로 구현하는 방법을 탐구합니다. 그래프의 기본 구조 정의 그래프는 노드와 엣지의 집합으로 정의됩니다. 노드는 그래프에서 개별 항목을, 엣지는 노드 간의 관계를 나타냅니다. 그래프는 방향성이 있는 유향 그래프와 방..
·Java
문자열 처리는 프로그래밍에서 흔히 마주치는 작업 중 하나입니다. 효율적인 문자열 처리는 검색 엔진, 데이터베이스, 보안 시스템 등 다양한 분야에서 중요한 역할을 합니다. Java는 문자열 처리를 위한 강력한 기능을 제공하며, 이를 활용해 다양한 문자열 알고리즘을 구현할 수 있습니다. 본문에서는 Java를 활용한 문자열 알고리즘의 몇 가지 기본적인 예제를 소개합니다. 문자열 뒤집기 문자열을 뒤집는 것은 문자열 알고리즘의 가장 기본적인 예제 중 하나입니다. 이 작업은 문자 배열로 변환한 다음, 배열의 앞뒤를 바꿔치기하는 방식으로 구현할 수 있습니다. public String reverseString(String str) { char[] charArray = str.toCharArray(); int left ..
·Java
그리디 알고리즘은 매 순간 최적의 해를 선택하여, 전체에서의 최적해를 도출하는 방식입니다. 이는 지역적으로 최적의 선택을 함으로써 전역적으로도 최적의 결과를 얻을 수 있다는 가정 하에 작동합니다. 이러한 접근 방식은 특정 문제에서 매우 효율적인 해결책을 제공할 수 있으며, Java는 이러한 알고리즘을 구현하기에 충분한 기능과 유연성을 제공합니다. 본문에서는 Java를 활용한 그리디 알고리즘의 구현 방법과, 동전 교환 문제와 작업 스케줄링 문제라는 두 가지 실제 사례를 통해 그리디 알고리즘의 적용 방법을 소개합니다. 동전 교환 문제 (Coin Change Problem) 동전 교환 문제는 주어진 동전들을 사용하여 특정 금액을 만드는 데 필요한 최소한의 동전 수를 찾는 문제입니다. 이 문제를 그리디 알고리즘..
·Java
동적 프로그래밍 (Dynamic Programming, DP)은 복잡한 문제를 더 작은 하위 문제로 나누어 해결한 다음, 그 결과를 저장하여 중복 계산을 피함으로써 효율적으로 최적의 해를 찾는 방법입니다. Java는 객체 지향 프로그래밍 언어로서 동적 프로그래밍 알고리즘을 구현하기에 적합한 기능과 구조를 제공합니다. 본문에서는 동적 프로그래밍의 기본 개념과 함께, Java를 활용하여 두 가지 유명한 DP 문제, 즉 피보나치 수열과 0-1 배낭 문제를 해결하는 방법을 소개합니다. 피보나치 수열 피보나치 수열은 각 숫자가 바로 앞 두 숫자의 합인 수열로, F(n)=F(n−1)+F(n−2)로 정의됩니다. 재귀만 사용하여 피보나치 수를 계산하면 많은 중복 계산이 발생합니다. 이를 효율적으로 해결하기 위해 동적 ..
·Java
재귀 알고리즘은 자기 자신을 호출하여 문제를 해결하는 방식으로, 복잡한 문제를 간단하고 명확하게 표현할 수 있게 해줍니다. 재귀는 분할 정복, 탐색, 정렬 알고리즘 등 다양한 분야에서 활용되며, Java 같은 현대 프로그래밍 언어는 재귀 호출을 지원하여 복잡한 문제를 쉽게 해결할 수 있도록 돕습니다. 본문에서는 팩토리얼 계산과 피보나치 수열 생성과 같은 기본적인 재귀 알고리즘을 Java로 구현하는 방법을 소개합니다. 팩토리얼 계산 팩토리얼은 가장 기본적인 재귀 알고리즘 예제 중 하나로, 주어진 수 n의 팩토리얼은 n×(n−1)×(n−2)×⋯×1 입니다. 재귀적으로는 n!을 n×(n−1)!로 정의할 수 있습니다. public int factorial(int n) { if (n
·Java
데이터를 효율적으로 관리하고 접근하는 것은 모든 소프트웨어 개발 프로젝트에서 중요한 부분입니다. 탐색 알고리즘은 주어진 데이터 세트에서 특정 항목을 찾는 과정을 말하며, 이는 데이터베이스 조회, 검색 엔진, 그리고 다양한 분야에서 핵심적으로 사용됩니다. Java는 다양한 탐색 알고리즘을 구현할 수 있는 강력한 언어로, 본문에서는 선형 탐색(Linear Search)과 이진 탐색(Binary Search) 두 가지 기본적인 탐색 알고리즘을 Java로 구현하는 방법을 소개합니다. 선형 탐색(Linear Search) 선형 탐색은 가장 단순한 탐색 알고리즘 중 하나로, 배열의 처음부터 끝까지 순차적으로 원하는 값을 찾는 방법입니다. 데이터의 양이 많지 않을 때 적합하며, 구현이 매우 간단합니다. 시간 복잡도는..
·Java
정렬은 컴퓨터 과학에서 가장 기본적이면서 중요한 알고리즘 중 하나입니다. 데이터를 특정 순서대로 배열하는 과정을 말하며, 이는 데이터 검색, 최적화 문제 해결 등 다양한 애플리케이션에 필수적입니다. Java 언어는 객체 지향 프로그래밍의 강력함을 바탕으로 다양한 정렬 알고리즘을 구현하는 데 이상적인 환경을 제공합니다. 본문에서는 Java를 사용하여 구현할 수 있는 세 가지 기본 정렬 알고리즘인 버블 정렬(Bubble Sort), 선택 정렬(Selection Sort), 그리고 삽입 정렬(Insertion Sort)에 대해 설명합니다. 버블 정렬(Bubble Sort) 버블 정렬은 가장 간단하고 직관적인 정렬 방법 중 하나입니다. 이 알고리즘은 배열을 순회하면서 인접한 요소를 비교하고, 잘못된 순서(예: ..
·Kotlin
병렬 컴퓨팅은 컴퓨터의 멀티코어 프로세서를 활용하여 여러 계산 작업을 동시에 수행함으로써 프로그램의 실행 속도를 향상시키는 기술입니다. 이는 대규모 데이터 처리, 과학 연산, 이미지 처리, 실시간 데이터 분석 등 다양한 분야에서 중요한 역할을 합니다. Kotlin은 코루틴과 같은 현대적인 동시성 기능을 제공함으로써, 병렬 컴퓨팅을 효율적으로 구현할 수 있는 강력한 언어입니다. 본 글에서는 Kotlin을 이용하여 병렬 컴퓨팅을 구현하는 방법과 그 장점을 탐구합니다. 병렬 컴퓨팅의 기본 원리 병렬 컴퓨팅은 작업을 여러 부분으로 나누고, 이를 동시에 다른 프로세서에서 실행하여 전체 작업의 완료 시간을 단축시킵니다. 이 과정에서 작업 분할, 데이터의 분산, 작업의 동기화 등 여러 도전 과제를 해결해야 합니다. ..
wsstar
걷고 또 걷기