그리디 알고리즘(Greedy Algorithm)은 매 순간 최적의 선택을 하여 최종적인 해답에 도달하는 방식으로, 각 단계에서의 최선의 해결책이 전체 문제의 최선의 해결책이 되는 경우에 적합합니다. 이러한 접근 방식은 문제를 효율적으로 단순화시킬 수 있으며, 특히 최적화 문제에서 자주 사용됩니다. Kotlin 언어의 간결함과 표현력을 활용하여 그리디 알고리즘을 구현하는 방법을 알아보겠습니다. 여기서는 동전 교환 문제와 활동 선택 문제(Activity Selection Problem)를 예로 들어 설명합니다. 동전 교환 문제 동전 교환 문제에서는 주어진 동전들을 사용하여 특정 금액을 만드는데 필요한 최소 동전의 수를 찾는 것입니다. 그리디 알고리즘을 사용할 때는 가장 큰 단위의 동전부터 사용하는 것이 일반..
분류 전체보기
동적 프로그래밍(Dynamic Programming, DP)은 복잡한 문제를 간단한 하위 문제로 나누어 해결한 후, 이 결과를 저장하여 중복 계산을 방지함으로써 효율적으로 문제를 해결하는 방법입니다. 이러한 접근 방식은 특히 최적화 문제와 카운팅 문제에서 유용하게 사용됩니다. Kotlin을 사용하여 동적 프로그래밍 알고리즘을 구현하는 방법을 통해, 복잡도를 줄이고 성능을 향상시킬 수 있는 방법을 알아보겠습니다. 여기서는 피보나치 수열과 동전 교환 문제를 예로 들어 설명합니다. 피보나치 수열과 동적 프로그래밍 피보나치 수열은 앞서 재귀적 방법으로 구현하는 방법을 살펴보았습니다. 재귀적 접근은 간단하고 이해하기 쉽지만, 같은 값을 여러 번 계산하는 문제가 있습니다. 동적 프로그래밍을 사용하면 이 문제를 해결..
재귀 알고리즘은 함수가 자기 자신을 호출하여 문제를 해결하는 방식을 말합니다. 재귀는 복잡한 문제를 간단하고 명확한 코드로 해결할 수 있게 해주며, 특히 분할 정복 알고리즘과 밀접한 관련이 있습니다. Kotlin에서 재귀 알고리즘을 구현하는 것은 간결하고 이해하기 쉬운 코드로 효율적인 문제 해결 방법을 제공합니다. 본 글에서는 Kotlin을 사용한 재귀 알고리즘의 기본 개념과 함께 팩토리얼 계산과 피보나치 수열 계산 예시를 통해 재귀의 구현 방법을 소개합니다. 재귀 알고리즘의 기본 원리 재귀 알고리즘은 기본적으로 두 부분으로 나뉩니다: 기반 조건(base case)과 재귀적 부분(recursive case). 기반 조건은 재귀 호출을 멈추는 조건이며, 재귀적 부분은 문제의 규모를 줄여나가며 자기 자신을 ..
데이터를 효율적으로 탐색하는 것은 소프트웨어 개발에서 중요한 부분입니다. Kotlin 언어를 활용하여 데이터 구조 내에서 원하는 값을 찾는 두 가지 기본적인 탐색 알고리즘, 선형 탐색(Linear Search)과 이진 탐색(Binary Search)을 구현하는 방법을 살펴보겠습니다. Kotlin의 간결하고 표현력 있는 문법을 통해 이러한 알고리즘을 쉽게 구현할 수 있으며, 더 빠른 데이터 처리를 위한 기초를 마련할 수 있습니다. 선형 탐색(Linear Search) 선형 탐색은 배열의 처음부터 끝까지 순차적으로 원하는 값이 있는지 확인하는 가장 기본적인 탐색 방법입니다. 배열 내의 모든 요소를 하나씩 확인하기 때문에 시간 복잡도는 O(n)입니다. Kotlin으로 선형 탐색을 구현하는 코드 예시는 다음과 ..