그래프 탐색 알고리즘은 그래프의 모든 노드를 체계적으로 탐색하는 기술로, 많은 컴퓨터 과학 문제를 해결하는 데 사용됩니다. 대표적인 그래프 탐색 알고리즘으로 깊이 우선 탐색(DFS, Depth-First Search)과 너비 우선 탐색(BFS, Breadth-First Search)이 있습니다. 이 글에서는 Kotlin을 활용하여 이 두 탐색 알고리즘을 구현하는 방법을 소개하겠습니다. 깊이 우선 탐색(DFS) 깊이 우선 탐색(DFS)은 가장 깊은 노드를 우선적으로 탐색하는 방식으로, 스택이나 재귀를 사용하여 구현할 수 있습니다. Kotlin에서의 DFS 구현 예제는 다음과 같습니다: class Graph(private val vertices: Int) { private val adjList: Mutabl..
분류 전체보기
비트 조작은 저수준 프로그래밍에서 매우 중요한 역할을 합니다. 이는 데이터 암호화, 압축, 네트워크 통신 등 다양한 분야에서 활용됩니다. Kotlin 언어는 Java 플랫폼 위에 구축되어 있기 때문에 Java의 강력한 비트 조작 기능을 그대로 사용할 수 있으며, 추가적인 편의성과 안전성을 제공합니다. 이 글에서는 Kotlin을 활용하여 몇 가지 기본적인 비트 조작 알고리즘을 구현하는 방법을 소개하겠습니다. 비트 반전 비트 반전은 모든 비트의 값을 0은 1로, 1은 0으로 변경하는 연산입니다. Kotlin에서는 inv() 함수를 사용하여 비트 반전을 쉽게 수행할 수 있습니다. fun invertBits(x: Int): Int = x.inv() 비트 카운트 비트 카운트는 주어진 정수에서 1로 설정된 비트의 ..
동적 계획법(Dynamic Programming, DP)은 복잡한 문제를 간단한 하위 문제로 나누어 해결한 후, 이 결과를 저장하여 중복 계산을 방지함으로써 효율적으로 문제를 해결하는 방법입니다. 특히, 최적화 문제에서 이 방법은 중요한 역할을 합니다. Kotlin을 활용하여 동적 계획법의 개념을 적용하고 구현하는 방법을 알아보겠습니다. 이 글에서는 피보나치 수열과 배낭 문제(Knapsack Problem)를 예로 들어 동적 계획법의 적용 방법을 소개합니다. 피보나치 수열 피보나치 수열에서 n번째 숫자는 n−1번째와 n−2번째 숫자의 합으로 정의됩니다. 이 문제를 동적 계획법으로 해결할 때, 이미 계산한 값을 저장하고 재사용함으로써 계산 시간을 크게 줄일 수 있습니다. fun fibonacci(n: In..
최소 신장 트리(Minimum Spanning Tree, MST)는 그래프의 모든 노드를 최소의 비용으로 연결하는 부분 그래프입니다. 이는 네트워크 설계, 클러스터링, 물류 및 도로 네트워크 최적화 등 다양한 분야에서 활용됩니다. MST를 찾는 대표적인 알고리즘으로는 크루스칼(Kruskal) 알고리즘과 프림(Prim) 알고리즘이 있습니다. Kotlin을 사용하여 이 두 알고리즘을 구현하는 방법을 살펴보겠습니다. 크루스칼(Kruskal) 알고리즘 크루스칼 알고리즘은 그래프의 간선을 가중치에 따라 오름차순으로 정렬한 후, 사이클을 형성하지 않는 선에서 최소 가중치를 가진 간선부터 차례대로 선택하여 MST를 구성하는 방식입니다. data class Edge(val src: Int, val dest: Int, ..